Cổ sinh vật học Edmontosaurus

Tăng trưởng

Trong một nghiên cứu năm 2011, Campione và Evans đã ghi lại dữ liệu từ tất cả các hộp sọ "edmontosaur" từ tầng Campanian và Maastrichtian rồi phác đồ thị hình thái, so sánh các tính chất khác biệt của hộp sọ với kích thước hộp sọ. Kết quả của họ cho thấy rằng trong cả hai loài Edmontosaurus được công nhận, nhiều chi tiết trước đây được sử dụng để phân loại các loài hoặc chi bổ sung có liên quan trực tiếp đến kích thước hộp sọ. Campione và Evans giải thích những kết quả này dứt khoát cho rằng hình dạng của sọ Edmontosaurus thay đổi đáng kể khi chúng lớn lên. Điều này đã dẫn đến một số sai lầm rõ ràng trong việc phân loại loài trong quá khứ. Thespesius edmonton từ tầng Campanian, trước đây được coi là một danh pháp đồng nghĩa của E. annectens do kích thước nhỏ và hình dạng hộp sọ, có nhiều khả năng là một mẫu chưa trưởng thành của loài E. regalis. Tương tự như vậy, ba loài edmontosaur từ tầng Maastrichtian đã được công nhận trước đó có thể là các giai đoạn sinh trưởng của một loài duy nhất, với E. saskatchewanensis đại diện cho cá thể non, E. annectens đại diện cho cá thể mới lớn, và Anatotitan copei là con trưởng thành. Hộp sọ trở nên dài hơn và phẳng hơn khi con vật lớn lên.[9]

Hệ thần kinh

Sở đồ năm 1905 cho thấy hộp sọ khá nhỏ của Triceratops (trên) và E. annectens

Não của Edmontosaurus đã được mô tả trong một số tờ báo khoa học và tóm tắt dựa trên việc sử dụng mô hình của khoang não. E. annectens[52][53] và E. regalis,[4] cũng như các mẫu không được xác định là loài này,[54][55][56] cũng đã được nghiên cứu theo cách này. Bộ não không đặc biệt lớn đối với một con vật có kích thước của Edmontosaurus.Não chỉ chiếm khoảng một phần tư chiều dài của hộp sọ,[2] và các mô hình khác nhau đã được đo với sai số trong khoảng 374 mililit (13 US fl oz)[75] đến 450 mililít (15 US fl oz),[56] chưa tính đến trường hợp bộ não có thể chiếm chỉ 50% khoang sọ, phần còn lại của khoảng trống còn lại có thể chưa khoang cứng bao xung quanh não.[55][56] Ví dụ, não của mẫu với mô hình sai số 374 mililit được ước tính có thể tích là 268 ml (9 US fl oz).[56] Não là một cấu trúc kéo dài,[55] và cũng tương tự như các động vật không thuộc lớp động vật có vú, chúng không có tân vỏ não.[56] Giống như Stegosaurus, ống thần kinh được mở rộng ở hông, nhưng không đến mức độ tương tự: không gian nội soi của Stegosaurus có thể tích gấp 20 lần khối nội sọ của nó, trong khi đó không gian nội soi của Edmontosaurus chỉ lớn hơn 2,59 lần khối lượng.[55]

Thức ăn

Các thích ứng

Tranh n=minh họa năm 1897 của Charles R. Knight cho rằng loài E. annectens sống thủy sinh và chỉ ăn các loài thực vật mềm, một ý tưởng khá nổi tiếng thời bấy giờ nhưng đã lỗi thời

Là loài khủng long mỏ vịt, Edmontosaurus là loài ăn thực vật lớn trên cạn. Răng của nó liên tục được thay thế và tạo thành các "khối" có chứa hàng trăm chiếc răng, chỉ một vài chiếc trong số đó được sử dụng ở bất cứ thời điểm nào.[8] Chúng sử dụng cái mỏ rộng để cắt thức ăn, có lẽ bằng cách cắt xén,[8] hoặc bằng cách đóng hàm giống như vỏ sò trên cành cây và buốt các lá và chồi bổ dưỡng.[21] Bởi vì các hàng răng bị thụt vào sâu bắt đầu từ bên ngoài của hàm, và vì các chi tiết giải phẫu khác, người ta suy đoán rằng Edmontosaurus và hầu hết các khủng long hông chim khác có cấu trúc giống như má, cơ bắp hoặc không có cơ bắp. Chức năng của má là giữ lại thức ăn trong miệng.[57][58] Phạm vi tìm ăn của loài này ở trong khoảng từ mặt đất đến 4 mét (13 ft) bên trên.[8]

Trước những năm 1960 và 1970, các nhà khoa học tin rằng các loài khủng long mỏ vịt như Edmontosaurus sống thủy sinh và ăn các cây thủy sinh.[59] Một ví dụ về điều này là lời giải thích năm 1970 của William Morris về một hộp sọ edmontosaur tàn dư của mỏ không xương. Ông đề xuất rằng loài này có chế độ ăn giống như một số loài vịt hiện đại, lọc động vật không xương sống thủy sinh như động vật thân mềmđộng vật giáp xác từ nước và xả nước qua rãnh hình chữ V dọc theo mặt của mỏ trên.[12] Cách giải thích về mỏ này đã bị chối bỏ, vì các rãnh và bề lồi giống mỏ rùa ăn cỏ hơn là các cấu trúc linh hoạt được thấy trong các loài chim ăn lọc.[59]

Răng của hàm dưới khi nhìn gần

Giữa những năm 1980 và thập niên đầu của những năm 2000, lời giải thích hiện hành về cách thức khủng long mỏ vịt tiêu hóa thức ăn của chúng theo mô hình được đưa ra vào năm 1984 bởi David B. Weishampel. Ông đề xuất rằng cấu trúc của hộp sọ cho phép chuyển động giữa ra sau và về trước của hàm dưới, và chuyển động cong xuống của các xương mang răng thuộc hàm trên khi miệng đóng lại. Hàm trên sẽ đập vào hàm răng hàm dưới như cái dũa, nghiền các nguyên liệu thực vật bị mắc kẹt giữa chúng.[8][60] Chuyển động như vậy sẽ tương đương như hành động nhai trong động vật có vú, mặc dù quá trình này hoạt động một cách hoàn toàn khác.[61] Khám phá vào đầu những năm 2000 đã thách thức mô hình của Weishampel. Một nghiên cứu được công bố vào năm 2008 bởi Casey Holliday và Lawrence Witmer đã phát hiện ra rằng các loài khủng long chân chim như Edmontosaurus thiếu các loại khớp xương sọ được tìm thấy trong những động vật hiện đại được biết là có hộp sọ động (hộp sọ cho phép chuyển động giữa các xương cấu thành của nó), chẳng hạn như ở bò sát có vảy và chim. Họ đề xuất rằng các khớp trước đây được hiểu là cho phép chuyển động sọ trong khủng long thực chất là các khu vực tăng trưởng sụn.[62] Một chứng cứ quan trọng làm bằng chứng cho mô hình của Weishampel là các vết định hướng của sự trầy xước trên răng, cho thấy hướng của chuyển động hàm. Các chuyển động kiểu khác có thể tạo ra các vết xước tương tự, chẳng hạn như chuyển động xương của hai nửa hàm dưới. Không phải tất cả các mô hình đều được xem xét kỹ lưỡng theo các tiêu chuẩn kỹ thuật hiện tại.[62] Vincent Williams và các đồng nghiệp (2009) đã công bố một tờ giấy về các vết xước hiển vi trên răng của loài này. Họ tìm thấy bốn loại vết trầy xước trên răng Edmontosaurus. Lớp phổ biến nhất được hiểu là kết quả của một chuyển động xiên, không phải là một chuyển động lên xuống đơn giản hoặc ngược lại, phù hợp với mô hình của Weishampel. Chuyển động này được cho là chuyển động chính để nghiền thức ăn. Hai lớp trầy xước khác được hiểu là kết quả của chuyển động tiến hoặc lùi của hàm. Các lớp khác là biến số và có thể là kết quả của việc mở hàm. Sự kết hợp của các chuyển động phức tạp hơn so với dự đoán trước đây.[63]

Sọ của E. annectens còn chứa chất sừng ở mỏ (bị gỡ bỏ một phần ở bên phải do nhầm lẫn), Bảo tàng Khoa học Lịch sự Tự nhiên Los Angeles

Weishampel đã phát triển mô hình của mình với sự trợ giúp của trình mô phỏng máy tính. Natalia Rybczynski và các đồng nghiệp đã cập nhật công trình này với một mô hình hoạt hình ba chiều phức tạp hơn nhiều, bằng cách quét hộp sọ của E. regalis bằng laser. Họ đã có thể tái tạo chuyển động được đề xuất với mô hình mới, mặc dù nhận thấy rằng chuyển động thứ cấp giữa các xương khác cần được điều chỉnh, với khoảng cách tối đa từ 1,3 đến 1,4 cm giữa một số xương trong chu kỳ nhai. Rybczynski và các đồng nghiệp không tin rằng mô hình của Weishampel khả thi, nhưng lưu ý rằng họ có nhiều cải tiến để nâng cao mô hình hoạt hình của họ. Các cải tiến lên kế hoạch bao gồm kết hợp các mô mềm và các vết mòn và vết trầy xước răng, điều này trên lí thuyết sẽ hạn chế cử động tốt hơn. Họ cũng lưu ý rằng còn hàng tá các giả thuyết khác để kiểm tra.[61] Nghiên cứu tiếp theo được công bố vào năm 2012 bởi Robin Cuthbertson và các đồng nghiệp đã tìm thấy những chuyển động cần thiết cho mô hình của Weishampel, và ủng hộ một mô hình trong đó chuyển động của hàm dưới có khả năng mài giũa thức ăn. Khớp của hàm dưới và hàm trên sẽ cho phép chuyển động trước sau cùng với vòng quay thông thường, và khớp trước của hai nửa của hàm dưới cũng sẽ cho phép chuyển động; kết hợp, hai nửa của hàm dưới có thể di chuyển hơi qua lại cũng như xoay nhẹ dọc theo trục dài của chúng. Những chuyển động này sẽ giải thích cho các răng bị mòn và một hộp sọ có kết cấu chắc chắn hơn so với mô hình của Weishampel.[64]

Bởi vì vết trầy xước chiếm ưu thế trong kết cấu hiển vi của răng, Williams et al. Edmontosaurus được đề xuất là động vật gặm cỏ thay vì là động vật bứt lá, giả thuyết này dự đoán sẽ có ít vết trầy xước do ăn ít vật liệu mài mòn hơn. Các ứng cử viên cho thức ăn mài mòn bao gồm các thực vật giàu silic như Equisetum và đất bị vô tình nuốt phải do ăn ở mặt đất.[63] Cấu trúc răng cho thấy khả năng cắt và nghiền kết hợp.[20]

Các báo cáo về sỏi dạ dày, trong chi Claosaurus có thể là nhầm lẫn đôi. Đầu tiên, mẫu vật đã có thể thực sự là loài Edmontosaurus annectens. Barnum Brown, người phát hiện ra mẫu vật vào năm 1900, gọi nó là Claosaurus vì E. annectens được cho là đồng nghĩa Claosaurus vào thời điểm đó. Ngoài ra, có nhiều khả năng là các viên sỏi bị lẫn vào trong quá trình con vật bị hóa thạch.[65]

Dáng đi

E. annectens trong dáng bốn chân

Giống như những con khủng long mỏ vịt khác, Edmontosaurus được cho là loài đi bằng hai chân có hạn chế, có nghĩa là chúng chủ yếu di chuyển trên bốn chân, nhưng có thể sử dụng riêng hai chân sau khi cần thiết. Chúng có thể đã đi bằng bốn chân khi đứng yên hoặc di chuyển chậm rãi, và chuyển sang sử dụng hai chân khi di chuyển nhanh hơn.[8] Nghiên cứu được tiến hành bằng mô hình máy tính năm 2007 cho thấy Edmontosaurus có thể chạy ở tốc độ cao, lên đến 45 km/h (28 dặm/h).[26] Các mô phỏng sau này sử dụng mẫu gần trưởng thành ước tính nặng 715 kg (1.576 lb) khi còn sống tạo ra một mô hình có thể chạy hoặc nhảy hai chân, chạy bộ, đi bước kiệu hoặc chạy sải với bốn chân đối xứng đơn hoặc phi nước đại. Các nhà nghiên cứu ngạc nhiên là dáng chạy nhanh nhất là bước nhảy kangaroo! (tốc độ mô phỏng tối đa là 17,3 m/s (62 km/h; 39 mph)), mà họ coi là không hợp lý do kích thước quá lớn của con vật và thiếu các bằng chứng dấu chân nhảy trong hồ sơ hóa thạch, và thay vào đó giải thích kết quả là lỗi thiếu chính xác trong mô phỏng của họ. Kiểu chạy không nhảy nhanh nhất là phi mã (tốc độ mô phỏng tối đa 15,7 m/s (57 km/h; 35 mph)) và chạy hai chân (tốc độ mô phỏng tối đa 14,0 m/s (50 km/h; 31 mph)). Họ đã tìm thấy chứng cứ yếu cho bước chạy hai chân là lựa chọn có khả năng nhất cho chuyển động tốc độ cao, nhưng không loại trừ khả năng con vật di chuyển bằng bốn chân tốc độ cao.[66]

Từng được cho là thủy sinh hoặc bán thủy sinh trong một thời gian dài, những loài khủng long mỏ vịt không phù hợp cho việc bơi lội như những loài khủng long khác (đặc biệt là các loài khủng long chân thú, những loài từng được cho là đã không thể truy đuổi con mồi dưới nước). Hadrosaurid có bàn tay mảnh mai với các ngón tay ngắn, khiến cho chân trước không hiệu quả để đẩy con vật dưới nước, và đuôi của chúng cũng không hữu ích để bơi vì các dây chằng rất chắc làm tăng độ cứng của đuôi và các điểm gắn cơ đuôi di chuyển từ bên sang bên rất kém phát triển.[67][68]

Tương tác với khủng long chân thú

Khoảng thời gian và phạm vi địa lý của Edmontosaurus chồng chéo với Tyrannosaurus, và một mẫu vật trưởng thành của E. annectens được trưng bày tại Bảo tàng Khoa học Tự nhiên Denver cho thấy bằng chứng về một vết cắn trên đuôi. Đếm ngược từ hông, các đốt sống thứ mười ba đến mười bảy đã bị hư hỏng đồng nghĩa với một cuộc tấn công từ phía sau bên phải. Một gai sống bị nát một phần, và những cái khác bị lệch; ba cái có dấu răng rõ ràng. Đỉnh của đuôi cao ít nhất là 2,9 mét (9,5 ft), và loài khủng long chân thú duy nhất được biết đến từ cùng một thành hệ đủ cao để tấn công cái đuôi như vậy là T. rex. Các xương đã hồi phục một phần, nhưng con edmontosaur đã chết trước khi các vết thương lành lại hoàn toàn. Vết thương cũng cho thấy dấu hiệu nhiễm trùng xương. Kenneth Carpenter, người nghiên cứu mẫu vật, lưu ý rằng dường như có cả một vết rạn nứt đã lành ở hông trái trước khi con vật bị cắn vì nó đã liền lại hoàn toàn. Ông suy đoán rằng con edmontosaur này bị chọn là mục tiêu do nó đã đi khập khiễng bởi chấn thương trước đó. Do nó sống sót sau cuộc mai phục, Carpenter cho rằng nó có thể đã nhanh hơn kẻ tấn công, hoặc thiệt hại này phát sinh bởi nó sử dụng đuôi như một vũ khí tự vệ chống lại các tyrannosaur.[69]

Hành vi xã hội

Khung xương mô hình của một con E. annectens non và trưởng thành

Nhiều tầng xương khác nhau được biết đến là của Edmontosaurus, và các khu tập trung này gợi ý rằng chúng là loài có tính bầy đàn, sống theo nhóm.[8] Ba mỏ đá chứa tàn dư của Edmontosaurus được xác định trong cơ sở dữ liệu hóa thạch năm 2007 của các tầng xương, từ Alberta (Thành hệ Hẻm Horseshoe), Nam Dakota (Thành hệ Hell Creek), và Wyoming (Thành hệ Lance). Một tầng xương edmontosaur, từ đá sétđá bùn của hệ tầng Lance ở phía đông Wyoming, có diện tích hơn một kilomet vuông, xương Edmontosaurus tập trung nhiều nhất trong một khu vực rộng 40 ha thuộc khu vực này. Người ta ước tính rằng đã có khoảng từ 10.000 đến 25.000 con edmontosaurs đã có mặt ở đây.[70]

Không giống như nhiều loài khủng long mỏ vịt khác, Edmontosaurus thiếu mào xương. Nó có thể có một cấu trúc phô trương tạo từ mô mềm trên hộp sọ, mặc dù vậy: xương xung quanh lỗ mũi có những vết lõm sâu xung quanh hốc thở, và cặp hốc này được các nhà khoa học đề xuất rằng là để bơm hơi vào các túi khí to, có lẽ con vật dùng chúng để hiển thị các tín hiệu thị giác và thính giác.[17] Hiện tượng nhiều hình thái có thể đã xuất hiện trong chi Edmontosaurus, có nghĩa là chúng có hai dạng cơ thể săn chắc và mảnh mai, nhưng chưa có bằng chứng rằng điều này có liên quan đến sự lưỡng hình tình dục.[71]

Edmontosaurus đã được coi là một loại di cư theo một số tác giả. Một đánh giá năm 2008 về nghiên cứu di cư khủng long của Phil R. Bell và Eric Snively đã đề xuất rằng loài E. regalis có khả năng di chuyển hàng năm với quãng đường hơn 2,600 km (1600 dặm), miễn là nó có hệ trao đổi chất và tỷ lệ dự trữ chất béo cần thiết. Một chuyến đi như vậy sẽ đòi hỏi tốc độ vào khoảng 2 đến 10 km/h, và có thể đi từ Alaska đến Alberta.[72][73] Trái ngược với Bell và Snively, Anusuya Chinsamy và các đồng nghiệp đã kết luận từ một nghiên cứu về cấu trúc vi mô của xương rằng Edmontosaurus ở vùng cực qua đông mà không di cư.[74]

Tài liệu tham khảo

WikiPedia: Edmontosaurus http://www.livescience.com/animals/081204-polar-di... http://www.msnbc.msn.com/id/23689410/ http://news.nationalgeographic.com/news/2007/12/ph... http://www.palaeos.com/Vertebrates/Units/320Ornith... http://www.thescelosaurus.com/hadrosaurinae.htm http://www.hzg.de/imperia/md/content/gkss/zentrale... http://adsabs.harvard.edu/abs/1893AmJS...45...83M http://adsabs.harvard.edu/abs/1909Sci....29..793F http://adsabs.harvard.edu/abs/1964AmJS..262..975O http://adsabs.harvard.edu/abs/2004PPP...206..257S